ECE 447: Robotics Engineering Midterm Exam (Time: 60 min .)

Name: Model Answer
[1] For the shown Sawyer robot, assign the coordinate frames on the right projection. Fill the DH table below.

Link	a_{i}	α_{i}	d_{i}	θ_{i}
1	0	-90	a_{1}	θ_{1}^{*}
2	0	+90	a_{2}	θ_{2}^{*}
3	0	-90	a_{3}	θ_{3}^{*}
4	0	+90	a_{4}	θ_{4}^{*}
5	0	-90	a_{5}	θ_{5}^{*}
6	0	+90	a_{6}	θ_{6}^{*}
7	0	0	a_{7}	θ_{7}^{*}

DH Table

DH terms:

(1) a_{i} : link length, distance between z_{i-1} and z_{i} (along x_{i}).
(2) α_{i} : link twist, angle between z_{i-1} and z_{i} (measured around x_{i})
(3) d_{i} : link offset, distance between o_{i-1} and intersection of z_{i-1} and x_{i} (along z_{i-1})
(4) θ_{i} : joint angle, between x_{i-1} and x_{i} (measured around z_{i-1})
[2] Consider the wedge-shaped object in the following drawing,
a) Obtain the transformation that should be applied to take it from the origin (left) to its final location (right).
b) Compute the coordinates of the point \boldsymbol{P} of the translated and rotated wedge with respect to the original frame.

